Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
This technical report represents the award-winning solution to the Cross-platform 3D Object Detection task in the RoboSense2025 Challenge. Our approach is built upon PVRCNN++, an efficient 3D object detection framework that effectively integrates point-based and voxel-based features. On top of this foundation, we improve cross-platform generalization by narrowing domain gaps through tailored data augmentation and a self-training strategy with pseudo-labels. These enhancements enabled our approach to secure the 3rd place in the challenge, achieving a 3D AP of 62.67% for the Car category on the phase-1 target domain, and 58.76% and 49.81% for Car and Pedestrian categories respectively on the phase-2 target domain.
In this paper, we present an automated pipeline for generating domain-specific synthetic datasets with diffusion models, addressing the distribution shift between pre-trained models and real-world deployment environments. Our three-stage framework first synthesizes target objects within domain-specific backgrounds through controlled inpainting. The generated outputs are then validated via a multi-modal assessment that integrates object detection, aesthetic scoring, and vision-language alignment. Finally, a user-preference classifier is employed to capture subjective selection criteria. This pipeline enables the efficient construction of high-quality, deployable datasets while reducing reliance on extensive real-world data collection.
Diagnosing dental diseases from radiographs is time-consuming and challenging due to the subtle nature of diagnostic evidence. Existing methods, which rely on object detection models designed for natural images with more distinct target patterns, struggle to detect dental diseases that present with far less visual support. To address this challenge, we propose {\bf DentalX}, a novel context-aware dental disease detection approach that leverages oral structure information to mitigate the visual ambiguity inherent in radiographs. Specifically, we introduce a structural context extraction module that learns an auxiliary task: semantic segmentation of dental anatomy. The module extracts meaningful structural context and integrates it into the primary disease detection task to enhance the detection of subtle dental diseases. Extensive experiments on a dedicated benchmark demonstrate that DentalX significantly outperforms prior methods in both tasks. This mutual benefit arises naturally during model optimization, as the correlation between the two tasks is effectively captured. Our code is available at https://github.com/zhiqin1998/DentYOLOX.
Medical contrastive vision-language pre-training (VLP) has demonstrated significant potential in improving performance on downstream tasks. Traditional approaches typically employ contrastive learning, treating paired image-report samples as positives and unpaired ones as negatives. However, in medical datasets, there can be substantial similarities between images or reports from different patients. Rigidly treating all unpaired samples as negatives, can disrupt the underlying semantic structure and negatively impact the quality of the learned representations. In this paper, we propose a multi-level alignment framework, Representation Learning with Semantic-aware Instance and Sparse Token Alignments (SISTA) by exploiting the semantic correspondence between medical image and radiology reports at two levels, i.e., image-report and patch-word levels. Specifically, we improve the conventional contrastive learning by incorporating inter-report similarity to eliminate the false negatives and introduce a method to effectively align image patches with relevant word tokens. Experimental results demonstrate the effectiveness of the proposed framework in improving transfer performance across different datasets on three downstream tasks: image classification, image segmentation, and object detection. Notably, our framework achieves significant improvements in fine-grained tasks even with limited labeled data. Codes and pre-trained models will be made available.
Vision modeling has advanced rapidly with Transformers, whose attention mechanisms capture visual dependencies but lack a principled account of how semantic information propagates spatially. We revisit this problem from a wave-based perspective: feature maps are treated as spatial signals whose evolution over an internal propagation time (aligned with network depth) is governed by an underdamped wave equation. In this formulation, spatial frequency-from low-frequency global layout to high-frequency edges and textures-is modeled explicitly, and its interaction with propagation time is controlled rather than implicitly fixed. We derive a closed-form, frequency-time decoupled solution and implement it as the Wave Propagation Operator (WPO), a lightweight module that models global interactions in O(N log N) time-far lower than attention. Building on WPO, we propose a family of WaveFormer models as drop-in replacements for standard ViTs and CNNs, achieving competitive accuracy across image classification, object detection, and semantic segmentation, while delivering up to 1.6x higher throughput and 30% fewer FLOPs than attention-based alternatives. Furthermore, our results demonstrate that wave propagation introduces a complementary modeling bias to heat-based methods, effectively capturing both global coherence and high-frequency details essential for rich visual semantics. Codes are available at: https://github.com/ZishanShu/WaveFormer.
The demand for real-time visual understanding and interaction in complex scenarios is increasingly critical for unmanned aerial vehicles. However, a significant challenge arises from the contradiction between the high computational cost of large Vision language models and the limited computing resources available on UAV edge devices. To address this challenge, this paper proposes a lightweight multimodal task platform based on BLIP-2, integrated with YOLO-World and YOLOv8-Seg models. This integration extends the multi-task capabilities of BLIP-2 for UAV applications with minimal adaptation and without requiring task-specific fine-tuning on drone data. Firstly, the deep integration of BLIP-2 with YOLO models enables it to leverage the precise perceptual results of YOLO for fundamental tasks like object detection and instance segmentation, thereby facilitating deeper visual-attention understanding and reasoning. Secondly, a content-aware key frame sampling mechanism based on K-Means clustering is designed, which incorporates intelligent frame selection and temporal feature concatenation. This equips the lightweight BLIP-2 architecture with the capability to handle video-level interactive tasks effectively. Thirdly, a unified prompt optimization scheme for multi-task adaptation is implemented. This scheme strategically injects structured event logs from the YOLO models as contextual information into BLIP-2's input. Combined with output constraints designed to filter out technical details, this approach effectively guides the model to generate accurate and contextually relevant outputs for various tasks.
Lightweight vision networks have witnessed remarkable progress in recent years, yet achieving a satisfactory balance among parameter scale, computational overhead, and task performance remains difficult. Although many existing lightweight models manage to reduce computation considerably, they often do so at the expense of a substantial increase in parameter count (e.g., LSNet, MobileMamba), which still poses obstacles for deployment on resource-limited devices. In parallel, some studies attempt to draw inspiration from human visual perception, but their modeling tends to oversimplify the visual process, making it hard to reflect how perception truly operates. Revisiting the cooperative mechanism of the human visual system, we propose GPM (Global-to-Parallel Multi-scale Encoding). GPM first employs a Global Insight Generator (GIG) to extract holistic cues, and subsequently processes features of different scales through parallel branches: LSAE emphasizes mid-/large-scale semantic relations, while IRB (Inverted Residual Block) preserves fine-grained texture information, jointly enabling coherent representation of global and local features. As such, GPM conforms to two characteristic behaviors of human vision perceiving the whole before focusing on details, and maintaining broad contextual awareness even during local attention. Built upon GPM, we further develop the lightweight H-GPE network. Experiments on image classification, object detection, and semantic segmentation show that H-GPE achieves strong performance while maintaining a balanced footprint in both FLOPs and parameters, delivering a more favorable accuracy-efficiency trade-off compared with recent state-of-the-art lightweight models.
3D object detection using LiDAR-based point cloud data and deep neural networks is essential in autonomous driving technology. However, deploying state-of-the-art models on edge devices present challenges due to high computational demands and energy consumption. Additionally, single LiDAR setups suffer from blind spots. This paper proposes SC-MII, multiple infrastructure LiDAR-based 3D object detection on edge devices for Split Computing with Multiple Intermediate outputs Integration. In SC-MII, edge devices process local point clouds through the initial DNN layers and send intermediate outputs to an edge server. The server integrates these features and completes inference, reducing both latency and device load while improving privacy. Experimental results on a real-world dataset show a 2.19x speed-up and a 71.6% reduction in edge device processing time, with at most a 1.09% drop in accuracy.
This paper presents GenDet, a novel framework that redefines object detection as an image generation task. In contrast to traditional approaches, GenDet adopts a pioneering approach by leveraging generative modeling: it conditions on the input image and directly generates bounding boxes with semantic annotations in the original image space. GenDet establishes a conditional generation architecture built upon the large-scale pre-trained Stable Diffusion model, formulating the detection task as semantic constraints within the latent space. It enables precise control over bounding box positions and category attributes, while preserving the flexibility of the generative model. This novel methodology effectively bridges the gap between generative models and discriminative tasks, providing a fresh perspective for constructing unified visual understanding systems. Systematic experiments demonstrate that GenDet achieves competitive accuracy compared to discriminative detectors, while retaining the flexibility characteristic of generative methods.
The advantage of RGB-Thermal (RGB-T) detection lies in its ability to perform modality fusion and integrate cross-modality complementary information, enabling robust detection under diverse illumination and weather conditions. However, under extreme conditions where one modality exhibits poor quality and disturbs detection, modality separation is necessary to mitigate the impact of noise. To address this problem, we propose a Modality-Decoupled RGB-T detection framework with Query Fusion (MDQF) to balance modality complementation and separation. In this framework, DETR-like detectors are employed as separate branches for the RGB and TIR images, with query fusion interspersed between the two branches in each refinement stage. Herein, query fusion is performed by feeding the high-quality queries from one branch to the other one after query selection and adaptation. This design effectively excludes the degraded modality and corrects the predictions using high-quality queries. Moreover, the decoupled framework allows us to optimize each individual branch with unpaired RGB or TIR images, eliminating the need for paired RGB-T data. Extensive experiments demonstrate that our approach delivers superior performance to existing RGB-T detectors and achieves better modality independence.