What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Mar 11, 2025
Abstract:Recently, large language models (LLMs) and visionlanguage models (VLMs) have achieved significant success, demonstrating remarkable capabilities in understanding various images and videos, particularly in classification and detection tasks. However, due to the substantial differences between remote sensing images and conventional optical images, these models face considerable challenges in comprehension, especially in detection tasks. Directly prompting VLMs with detection instructions often fails to yield satisfactory results. To address this issue, this letter explores the application of VLMs for object detection in remote sensing images. Specifically, we utilize publicly available remote sensing object detection datasets, including SSDD, HRSID, and NWPU-VHR-10, to convert traditional annotation information into natural language, thereby constructing an instruction-tuning (SFT) dataset for VLM training. We then evaluate the detection performance of different fine-tuning strategies for VLMs and obtain optimized model weights for object detection in remote sensing images. Finally, we assess the model's prior knowledge capabilities through natural language queries.Experimental results demonstrate that, without modifying the model architecture, remote sensing object detection can be effectively achieved using natural language alone. Additionally, the model exhibits the ability to perform certain vision question answering (VQA) tasks. Our dataset and relevant code will be released soon.
Via

Mar 11, 2025
Abstract:Query-based methods with dense features have demonstrated remarkable success in 3D object detection tasks. However, the computational demands of these models, particularly with large image sizes and multiple transformer layers, pose significant challenges for efficient running on edge devices. Existing pruning and distillation methods either need retraining or are designed for ViT models, which are hard to migrate to 3D detectors. To address this issue, we propose a zero-shot runtime pruning method for transformer decoders in 3D object detection models. The method, termed tgGBC (trim keys gradually Guided By Classification scores), systematically trims keys in transformer modules based on their importance. We expand the classification score to multiply it with the attention map to get the importance score of each key and then prune certain keys after each transformer layer according to their importance scores. Our method achieves a 1.99x speedup in the transformer decoder of the latest ToC3D model, with only a minimal performance loss of less than 1%. Interestingly, for certain models, our method even enhances their performance. Moreover, we deploy 3D detectors with tgGBC on an edge device, further validating the effectiveness of our method. The code can be found at https://github.com/iseri27/tg_gbc.
Via

Mar 11, 2025
Abstract:Most previous 3D object detection methods that leverage the multi-modality of LiDAR and cameras utilize the Bird's Eye View (BEV) space for intermediate feature representation. However, this space uses a low x, y-resolution and sacrifices z-axis information to reduce the overall feature resolution, which may result in declined accuracy. To tackle the problem of using low-resolution features, this paper focuses on the sparse nature of LiDAR point cloud data. From our observation, the number of occupied cells in the 3D voxels constructed from a LiDAR data can be even fewer than the number of total cells in the BEV map, despite the voxels' significantly higher resolution. Based on this, we introduce a novel sparse voxel-based transformer network for 3D object detection, dubbed as SparseVoxFormer. Instead of performing BEV feature extraction, we directly leverage sparse voxel features as the input for a transformer-based detector. Moreover, with regard to the camera modality, we introduce an explicit modality fusion approach that involves projecting 3D voxel coordinates onto 2D images and collecting the corresponding image features. Thanks to these components, our approach can leverage geometrically richer multi-modal features while even reducing the computational cost. Beyond the proof-of-concept level, we further focus on facilitating better multi-modal fusion and flexible control over the number of sparse features. Finally, thorough experimental results demonstrate that utilizing a significantly smaller number of sparse features drastically reduces computational costs in a 3D object detector while enhancing both overall and long-range performance.
Via

Mar 11, 2025
Abstract:We report on a novel methodology for extracting material parameters from spectroscopic optical data using a physics-based neural network. The proposed model integrates classical optimization frameworks with a multi-scale object detection framework, specifically exploring the effect of incorporating physics into the neural network. We validate and analyze its performance on simulated transmission spectra at terahertz and infrared frequencies. Compared to traditional model-based approaches, our method is designed to be autonomous, robust, and time-efficient, making it particularly relevant for industrial and societal applications.
* Submitted for IRMMW-THz 2025 conference proceedings
Via

Mar 11, 2025
Abstract:Leitmotifs are musical phrases that are reprised in various forms throughout a piece. Due to diverse variations and instrumentation, detecting the occurrence of leitmotifs from audio recordings is a highly challenging task. Leitmotif detection may be handled as a subcategory of audio event detection, where leitmotif activity is predicted at the frame level. However, as leitmotifs embody distinct, coherent musical structures, a more holistic approach akin to bounding box regression in visual object detection can be helpful. This method captures the entirety of a motif rather than fragmenting it into individual frames, thereby preserving its musical integrity and producing more useful predictions. We present our experimental results on tackling leitmotif detection as a boundary regression task.
* 2 pages, 1 figure; presented at the 2024 ISMIR conference
Late-Breaking Demo
Via

Mar 11, 2025
Abstract:Keypoints are what enable Structure-from-Motion (SfM) systems to scale to thousands of images. However, designing a keypoint detection objective is a non-trivial task, as SfM is non-differentiable. Typically, an auxiliary objective involving a descriptor is optimized. This however induces a dependency on the descriptor, which is undesirable. In this paper we propose a fully self-supervised and descriptor-free objective for keypoint detection, through reinforcement learning. To ensure training does not degenerate, we leverage a balanced top-K sampling strategy. While this already produces competitive models, we find that two qualitatively different types of detectors emerge, which are only able to detect light and dark keypoints respectively. To remedy this, we train a third detector, DaD, that optimizes the Kullback-Leibler divergence of the pointwise maximum of both light and dark detectors. Our approach significantly improve upon SotA across a range of benchmarks. Code and model weights are publicly available at https://github.com/parskatt/dad
* fixed incorrect url
Via

Mar 11, 2025
Abstract:Low-cost millimeter automotive radar has received more and more attention due to its ability to handle adverse weather and lighting conditions in autonomous driving. However, the lack of quality datasets hinders research and development. We report a new method that is able to simulate 4D millimeter wave radar signals including pitch, yaw, range, and Doppler velocity along with radar signal strength (RSS) using camera image, light detection and ranging (lidar) point cloud, and ego-velocity. The method is based on two new neural networks: 1) DIS-Net, which estimates the spatial distribution and number of radar signals, and 2) RSS-Net, which predicts the RSS of the signal based on appearance and geometric information. We have implemented and tested our method using open datasets from 3 different models of commercial automotive radar. The experimental results show that our method can successfully generate high-fidelity radar signals. Moreover, we have trained a popular object detection neural network with data augmented by our synthesized radar. The network outperforms the counterpart trained only on raw radar data, a promising result to facilitate future radar-based research and development.
* submitted to IROS 2025
Via

Mar 11, 2025
Abstract:There is growing interest in automating surgical tasks using robotic systems, such as endoscopy for treating gastrointestinal (GI) cancer. However, previous studies have primarily focused on detecting and analyzing objects or robots, with limited attention to ensuring safety, which is critical for clinical applications, where accidents can be caused by unsafe robot motions. In this study, we propose a new control framework that can formally ensure the safety of automating certain processes involved in endoscopic submucosal dissection (ESD), a representative endoscopic surgical method for the treatment of early GI cancer, by using an endoscopic robot. The proposed framework utilizes Control Barrier Functions (CBFs) to accurately identify the boundaries of individual tumors, even in close proximity within the GI tract, ensuring precise treatment and removal while preserving the surrounding normal tissue. Additionally, by adopting a model-free control scheme, safety assurance is made possible even in endoscopic robotic systems where dynamic modeling is challenging. We demonstrate the proposed framework in cases where the tumors to be removed are close to each other, showing that the safety constraints are enforced. We show that the model-free CBF-based controlled robot eliminates one tumor completely without damaging it, while not invading another nearby tumor.
* This paper is submitted to IEEE Access
Via

Mar 10, 2025
Abstract:Most visual models are designed for sRGB images, yet RAW data offers significant advantages for object detection by preserving sensor information before ISP processing. This enables improved detection accuracy and more efficient hardware designs by bypassing the ISP. However, RAW object detection is challenging due to limited training data, unbalanced pixel distributions, and sensor noise. To address this, we propose SimROD, a lightweight and effective approach for RAW object detection. We introduce a Global Gamma Enhancement (GGE) module, which applies a learnable global gamma transformation with only four parameters, improving feature representation while keeping the model efficient. Additionally, we leverage the green channel's richer signal to enhance local details, aligning with the human eye's sensitivity and Bayer filter design. Extensive experiments on multiple RAW object detection datasets and detectors demonstrate that SimROD outperforms state-of-the-art methods like RAW-Adapter and DIAP while maintaining efficiency. Our work highlights the potential of RAW data for real-world object detection.
Via

Mar 10, 2025
Abstract:Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
Via
